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Abstract. We study the director field around a spherical particle immersed in a uniformly aligned nematic
liquid crystal and assume that the molecules prefer a homeotropic orientation at the surface of the particle.
Three structures are possible: a dipole, a Saturn-ring, and a surface-ring configuration, which we investigate
by numerically minimizing the Frank free energy supplemented by a magnetic-field and a surface term. In
the dipole configuration, which is the absolutely stable structure for micron-size particles and sufficiently
strong surface anchoring, a twist transition is found and analyzed. We show that a transition from the dipole
to the Saturn ring configuration is induced by either decreasing the particle size or by applying a magnetic
field. The effect of metastability and the occurrence of hysteresis in connection with a magnetic field are
discussed. The surface-ring configuration appears when the surface-anchoring strength W is reduced. It is
also favored by a large saddle-splay constant K24. A comparison with recent experiments [10,13] gives a
lower bound for W, i.e., W > 0.06 erg/cm2 for the interface of water and pentylcyanobiphenyl (5CB) in
the presence of the surfactant sodium dodecyl sulfate.

PACS. 77.84.Nh Liquids, emulsions, and suspensions; liquid crystals – 61.30.Cz Theory and models of
liquid crystal structure – 61.30.Jf Defects in liquid crystals

1 Introduction

Dispersions of particles in a host fluid are part of our ev-
eryday life and an important state of matter. Since they
appear in food (e.g. milk), drugs, paints, and ink, they are
of considerable technological importance. In colloidal sus-
pensions the particles are solid, whereas emulsions are dis-
persions of liquid droplets coated with a surfactant. There
exists a whole zoo of interactions between the particles
whose delicate balance determines the stability of a dis-
persion. Besides the conventional van-der-Waals, screened
Coulombic, and steric interactions [1], fluctuation-induced
Casimir forces [2,3] and depletion forces [1,4–6] have at-
tracted a lot of interest.

When the particles are dispersed in a nematic liq-
uid crystal, i.e., an anisotropic fluid, where elongated or-
ganic molecules are aligned on average along a common
direction called director, additional long-range forces due
to elastic deformations of the director field are induced.
These forces are of dipolar or quadrupolar type depending
on the symmetry of the director configuration around the
particle [7–11], and they were confirmed by recent exper-
iments in inverted nematic emulsions [10,12,13]. On the
other hand topological point defects in the orientational
order of the molecules give rise to a short-range repul-
sion [10,13]. Related early work deals with forces between
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walls mediated by an enclosed nematic liquid crystal [14,
15]. Surface-induced nematic order in the isotropic phase
close to the isotropic-nematic phase transition leads to a
short-range interaction as reported in most recent experi-
mental and theoretical work [16–19]. Even Casimir forces
arising from fluctuations in the liquid crystalline order pa-
rameter have been calculated [20–22].

Before treating the interaction between particles it is
necessary to understand how one single particle behaves
in a nematic environment. This article deals with the pos-
sible director configurations around a spherical particle,
which is placed into a uniformly aligned nematic liquid
crystal, and which prefers a homeotropic, i.e., perpendic-
ular anchoring of the molecules at its surface. This is al-
ready a complicated problem. Since it cannot be solved
analytically without employing an ansatz function for the
director configuration and further approximations, we will
handle it by numerical methods.

Poulin et al. showed experimentally that in in-
verted nematic emulsions, where surfactant-coated water
droplets are dispersed in a nematic liquid crystal, a di-
rector field configuration of dipolar symmetry occurs (see
Fig. 1) [10,13]. The water droplet and its companion hy-
perbolic point defect form a tightly bound object which we
call dipole for short. A similar observation at a nematic-
isotropic interface was made by Meyer much earlier [23].
Both the droplet and the defect carry a topological charge
+1, which “add up” to the total charge 0 of the dipole [24].
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Fig. 1. A spherical particle with a preferred homeotropic an-
choring at its surface that is placed into a uniformly aligned
nematic liquid crystal exhibits three possible structures: the
dipole configuration where the particle is accompanied by
a hyperbolic hedgehog, the Saturn-ring configuration where
the particle is surrounded by a −1/2 disclination ring at the
equator, and the surface-ring configuration.

Theoretically it was described with the help of ansatz
functions that were motivated by an electrostatic ana-
log [10,11]. Terentjev et al. introduced the Saturn-ring
configuration with quadrupolar symmetry where a −1/2
disclination ring surrounds the sphere at the equator (see
Fig. 1). It was investigated by both analytical and numer-
ical methods [25,26]. By shrinking the disclination ring
to the topologically equivalent hyperbolic point defect,
the Saturn ring can be continuously transformed into the
dipole configuration [11]. With the help of an ansatz func-
tion that describes such a transformation it was conjec-
tured that for sufficiently small particles the Saturn ring
should be more stable than the dipole [11]. For a finite
anchoring strength of the molecules at the surface a third
structure occurs, which we also illustrate in Figure 1. We
call it the surface-ring configuration. Depending on the
anchoring strength W , there exists either a −1/2 disclina-
tion ring sitting directly at the surface, or, for smaller W
[26], the director field is smooth everywhere, and a ring
of tangentially oriented molecules is located at the equa-
tor of the sphere. By means of a Monte-Carlo simulation
Ruhwandl and Terentjev showed that for sufficiently small
anchoring strengthW the surface ring is the preferred con-
figuration [27].

In this article we give a full account of the three direc-
tor configurations in Figure 1 by numerically minimizing
the Frank free energy supplemented by a magnetic-field
and a surface term [28]. We go beyond the one-constant
approximation, generally used in the work cited above,
and include the saddle-splay term of the Frank free en-

ergy. Furthermore, the results of the analytic approach
based on the use of ansatz functions are checked. In par-
ticular, we investigate the dipole configuration, which un-
dergoes a twist transition. Then, we show in detail that
the transition from the dipole to the Saturn ring config-
uration can be either achieved by decreasing the particle
size or by applying a magnetic field. The role of metasta-
bility is discussed. Finally, the surface ring is considered,
and the special role of the saddle-splay free energy for its
occurrence is pointed out. Lower bounds for the surface-
anchoring strength W are given. All these results are pre-
sented in Section 3. In Section 2 we define the geometry
of our problem, write down the reduced free energy, and
explain the numerical method to minimize it.

2 Geometry, free energy, and numerical
method

The director field around a spherical particle follows from
the minimization of the Frank free energy supplemented
by a magnetic-field and a surface term. In this section we
describe our coordinate system, review the free energy,
and give some numerical details.

2.1 Geometry

The region outside the spherical particle with radius a is
infinitely extended. We use a modified spherical coordi-
nate system with a radial coordinate ρ = 1/r2 where r is
the distance of a space point from the center of the par-
ticle measured in units of a. The exponent 2 is motivated
by the far-field of the dipole configuration [10,11]. Such
a transformation has two advantages. The exterior of the
particle is mapped into a finite region, i.e., the interior of
the unit sphere (ρ ≤ 1). Furthermore, equally spaced grid
points along the coordinate ρ result in a mesh size in real
space which is small close to the surface of the particle. In
this area the director field is strongly varying, and hence
a good resolution for the numerical calculation is needed.
On the other hand, the mesh size is large far away from
the sphere where the director field is nearly homogeneous.
Since our system is axially symmetric, the director field
only depends on ρ and the polar angle θ as illustrated in
Figure 2. The symmetry axis corresponds to the z axis.
At each point (ρ, θ) we attach the local coordinate basis
(er, eθ, eφ) of the standard spherical coordinate system
and express the director in this basis:

n(ρ, θ) = nr(ρ, θ)er + nθ(ρ, θ)eθ + nφ(ρ, θ)eφ. (1)

Since the director is a unit vector, we write

nr=cosΘ, nθ=sinΘ cosΦ, nφ=sinΘ sinΦ, (2)

where Θ(ρ, θ) and Φ(ρ, θ) denote, respectively, the tilt and
the twist angle. At the surface of the particle, we allow the
director to rotate away from the preferred radial direction
by introducing a surface free energy (see next subsection).
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Fig. 2. Illustration of the modified spherical coordinates (ρ =
1/r2, θ). At each point the local coordinate basis (er, eθ, eφ)
of the standard spherical coordinate system is attached. The
integration area is given by 0 ≤ ρ ≤ 1.

At infinity, i.e., at ρ = 0, n always points along the z axis.
For completeness we note that the differentials dr and dρ
are connected via

dr = −dρ/(2ρ3/2). (3)

2.2 Free energy

The free energy, which we will minimize, consists of bulk
and surface terms:

Fn =

∫
d3x(fel + f24 + fH) +

∫
dSfS (4)

with the free energy densities:

fel =
1

2
{K1(∇ · n)2+K2(n ·∇×n)2+K3[n×(∇× n)]2}

(5a)

f24 = −
1

2
K24∇ · [n(∇ · n) + n× (∇× n)] (5b)

fH = −
1

2
∆χ[(n ·H)2 −H2] (5c)

fS =
1

2
W [1− (n · ν̂)2]. (5d)

The Oseen-Zöcher-Frank free energy density fel + f24 de-
scribes elastic distortions of the director field n(r), where
K1, K2, K3, and K24 denote, respectively, the splay, twist,
bend, and saddle-splay elastic constants. The saddle-splay
term is a pure divergence; it, therefore, can be transformed
into integrals over all surfaces of the system. A Cauchy
relation for K24 follows from the Maier-Saupe molecular
approach [29]:

K24 = (K11 +K22)/2. (6)

(There is also the possibility of another surface term with a
free energy density K13∇ ·(n∇ ·n), which we will not con-
sider in this paper.) Equation (5c) couples the director to
an external magnetic field H, where ∆χ = χ‖−χ⊥ stands

for the magnetic anisotropy. The symbols χ‖ and χ⊥ de-
note the magnetic susceptibilities for a magnetic field ap-
plied, respectively, parallel or perpendicular to the direc-
tor. In this paper we consider a positive ∆χ that favors
an alignment of the director n parallel to H. Since we cal-
culate the magnetic free energy of the infinitely extended
region around the sphere, we use the magnetic free energy
of a completely aligned director field as a reference point
to avoid infinities. As a result the term−∆χH2/2 in equa-
tion (5c) occurs. Finally, we employ the surface free energy
of Rapini-Papoular to take into account the interaction of
the director with the boundaries. In equation (5d) the unit
vector ν̂ denotes some preferred orientation of the director
at the surface, and W is the coupling constant. It varies
in the range 10−4−1 erg/cm2 as reviewed by Blinov et al.
[30]. However, the authors do not specify W for the in-
terface of water and the liquid-crystalline phase of 5CB
in the presence of the surfactant sodium dodecyl sulfate,
which was used in the experiment by Poulin et al. [10,13].
In Section 3.3 we will give a lower bound for W for such
an interface.

For the numerical minimization a reduced form of the
free energy of equation (4) is used. We introduce the en-
ergy unit πK3a and refer all lengths to the radius a of the
spherical particle. Furthermore, we employ the modified
spherical coordinates (ρ, θ), take into account the axial
symmetry of our system, and, finally, arrive at the reduced
free energy

Fn = Fn/(πK3a) (7)

=

∫
ρ≤1

dθdρ
sin θ

ρ5/2
(f el + f24 + fH) +

∫
ρ=1

dθ sin θfS,

where

f el =
1

2
{K1(∇ · n)2+K2(n ·∇×n)2+[n×(∇× n)]2}

(8a)

f24 = −
1

2
K24∇ · [n(∇ · n) + n× (∇× n)] (8b)

fH = −
1

2
ξ−2
H [(nr cos θ − nθ sin θ)2 − 1] (8c)

fS = ξ−1
S (1− n2

r). (8d)

In equations (8a, 8b) the coefficients K1 = K1/K3, K2 =
K2/K3, and K24 = K24/K3 denote, respectively, the re-
duced splay, twist, and saddle-splay elastic constants. The
single contributions to the Frank free energy density in
our modified spherical coordinates are rather lengthy, and
we refer the reader to Appendix A for the detailed form.
We always apply the magnetic field H along the symme-
try axis of our system, which coincides with the z axis (see
Fig. 2). Inserting H = Hez with ez = cos θer−sin θeθ into
equation (5c) we obtain the magnetic free energy density
of equation (8c). The strength of the field is given via the
reduced magnetic coherence length:

ξH =
√
K3/(∆χH2)/a. (9)

It indicates the distance in the bulk which is needed to ori-
ent the director along the applied field when, e.g., through
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boundary conditions a different preferred orientation of
the molecules exists [28]. The length tends to infinity for
H → 0. The surface term of equation (8d) follows from
equation (5d) by choosing ν̂ = er, i.e., a preferred radial
anchoring of the molecules at the surface of the suspended
particle. The reduced extrapolation length [28]

ξS = K3/(Wa) (10)

signifies the strength of the anchoring. It compares the
Frank free energy of the bulk, which is proportional to
K3a, to the surface energy, which scales with Wa2. At
strong anchoring, i.e., for ξS � 1 the energy to rotate
the director away from its preferred direction ν̂ at the
whole surface would be much larger than the bulk energy.
Therefore, it is preferable for the system when the director
points along ν̂. However, n can deviate from ν̂ in the
area ξSa

2. This will explain the result in Section 3.3 where
we show that the surface ring already appears at strong
surface coupling. Rigid anchoring is realized for ξS → 0,
and ξS � 1 means weak anchoring, where the influence of
the surface is minor.

To calculate the free energy Fn numerically, we trans-
form the saddle-splay term into a surface integral:

F 24 = K24

∫
ρ=1

dθ sin θer · [n(∇ · n) + n× (∇× n)].

(11)

The detailed form follows from Appendix A. In performing
Gauss’s theorem we only include the surface of the sphere.
A contribution from the surface of the core of a possible
disclination ring does not occur [31]. For rigid homeotropic
anchoring (nr = 1, nθ = nφ = 0) the free energy of the
saddle-splay term (11) is

F 24 = 4K24. (12)

To arrive at equation (12), we used ∂nr/∂ρ = 0, which is
valid because of the normalization of the director.

The free energy of a ±1/2 disclination ring is taken
into account by the line energy Fd of a ±1/2 disclination.
In the one-constant approximation (K1 = K2 = K3 = K)
and in reduced units it reads [33]

F d = Fd/K =
π

4

(
1

2
+ ln

R

rc

)
. (13)

The first term denotes the line energy of the core with
a core radius rc which in absolute lengths is of the order
of 10 nm. The second term stands for the elastic energy
around the line defect where R is the radius of a circu-
lar cross section of the disclination (see Fig. 3b). In the
general case (K1 6= K2 6= K3) an analytical expression
for the elastic energy does not exist. We only use a rough
approximation for the core energy Fc by averaging over
the Frank constants:

F c = Fc/K3 =
π

8
(K1 +K2 + 1)/3. (14)

b)

R

dθ
rd

a)

Fig. 3. (a) Coordinates (rd, θd) for a −1/2 disclination ring
with a general position around the spherical particle; (b)
Circular cross section of the −1/2 disclination ring with
radius R.

A more quantitative description of the free energy of
a disclination has to start from the Landau-Ginzburg-
de Gennes free energy with the full alignment tensor Q
[34,35].

We finish this Section with an important remark about
length scales. In the free energy of equation (7) all lengths
are given relative to the particle radius a, which appears in
the absolute energy unit πK3a only. This would suggest
that the director configuration does not depend on the
particle size. However, with the core radius rc a second
length scale is introduced, which in absolute lengths is
always of the order of 10 nm [33]. On the other hand, in
the next subsection we explain that rc in units of a is a
parameter of our numerical method whose lower bound is
determined by the mesh size of the grid. In the discussions
of Section 3 we want to make a connection to experiments.
Therefore, we do not give this dimensionless rc, but use an
absolute core size of 10 nm to calculate the corresponding
particle radius a:

a = 10 nm/rc. (15)

In Section 3.2.1 we will study how the configuration
around a spherical particle depends on a.

2.3 Minimization and numerical details

The fields of the tilt [Θ(ρ, θ)] and the twist [Φ(ρ, θ)] an-
gle follow from a minimization of the reduced free en-
ergy Fn[Θ,Φ] of equation (7). The corresponding Euler-
Lagrange equations are equivalent to the functional
derivatives of Fn[Θ,Φ]:

δFn

δΘ
=
δFn

δni

∂ni

∂Θ
= 0 (16)

δFn

δΦ
=
δFn

δni

∂ni

∂Φ
= 0, (17)

where i stands for r, θ, and φ and Einstein’s summation
convention over repeated indices is used. We have em-
ployed a chain rule to arrive at the Euler-Lagrange equa-
tions for Θ(ρ, θ) and Φ(ρ, θ), which is generally valid for
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functional derivatives as shown in Appendix B. Perform-
ing the variation of the free energy Fn, we arrive at the
Euler-Lagrange equations in the bulk,[(

∂

∂ni
−

∂

∂xj

∂

∂ni,j

)
sin θ

ρ5/2
(f el + fH)

]
∂ni

∂Θ
= 0 (18)

[(
∂

∂ni
−

∂

∂xj

∂

∂ni,j

)
sin θ

ρ5/2
(f el + fH)

]
∂ni

∂Φ
= 0, (19)

and at the surface,(
∂fS

∂ni
+

∂

∂ni,ρ
(f el + f24)

)
∂ni

∂Θ
= 0 (20)

(
∂fS

∂ni
+

∂

∂ni,ρ
(f el + f24)

)
∂ni

∂Φ
= 0, (21)

where ni,j stands for ∂ni/∂xj. The Euler-Lagrange equa-
tions are calculated with the help of the algebraic pro-
gram Maple and are then imported into a Fortran program
where they are usually solved on a rectangular 33 × 129
grid in the (ρ, θ) space. In equation (33) of reference [11]
an analytical form of the director configuration of a −1/2
disclination ring around a spherical particle is given. The
position of this ring is determined by the radial (rd) and
the angular (θd) coordinates (see Fig. 3a). We take this
director configuration and let it relax via the standard
Newton-Gauss-Seidel method [36]. In the dipole configu-
ration (θd = 0, π) the hyperbolic point defect moves along
the z axis in its local minimum when the numerical relax-
ation is performed. However, a disclination ring (θd 6= 0, π)
basically stays at the position where we place it. This is a
numerical phenomenon which is, e.g., also encountered in
the study of the attraction of two point defects in a cylin-
drical capillary. There seems to be a “numerical” barrier
for a defect to cross a grid line [37]. We use this phe-
nomenon to investigate the free energy as a function of
rd and θd which gives an instructive insight into poten-
tial barriers for a transition between the dipole and the
Saturn-ring configuration. Our results are equivalent to
determining the director field for a fixed position of the
disclination ring.

The free energy Fn of the director field follows from a
numerical integration. This procedure assigns some energy
to the disclination ring which certainly is not correct. To
obtain a more accurate value for the total free energy F ,
we use the formula

F = Fn − Fn

∣∣
torus

+ F c/d2πrd sin θd. (22)

The quantity Fn

∣∣
torus

denotes the numerically calculated

free energy of a toroidal region of cross section πR2

around the disclination ring (see Fig. 3b). Its volume is
πR22πrd sin θd, where the coordinates (rd, θd) of the ring
are determined by searching for the maximum of the lo-
cal free energy density f el. The value Fn

∣∣
torus

is replaced
by the last term on the right-hand side of equation (22),
which provides the correct free energy according to equa-
tions (13) or (14). To find out how large the cross section

πR2 of the cut torus has to be, we employed the last for-
mula and the line energy of equation (13) for constant rc
and varying R. To be consistent, F should not depend on
R. Within an error of less than 1% this is the case if πR2

is equal or larger than 3∆ρ∆θ/2 where ∆ρ and ∆θ are
the lattice constants of our grid. To study the transition
between the dipole and the Saturn ring as a function of
the particle size, we choose πR2 = 25∆ρ∆θ/2, employ
equation (13) for different rc, and calculate a from equa-
tion (15). In all other cases we set R = rc, determine rc
from πr2

c = 3∆ρ∆θ/2, and use the core energy of equa-
tion (14).

The radial extension of the core of a point defect is also
of the order of 10 nm [38], and its free energy is approxi-
mated by K3×10 nm. As we show in the following section
the free energy of the dipole amounts to around 10πK3a.
Since we consider particle radii larger than 100 nm, the
contribution from the energy of the point defect is always
smaller than 1%. This is beyond our numerical accuracy,
and therefore no energetical correction for the point defect
was included.

The discussion in the following section always uses the
one-constant approximation or the nematic liquid crystal
pentylcyanobiphenyl (5CB) with the bend elastic constant
K3 = 0.53 × 10−6 dyn and the reduced splay and twist
elastic constants K1 = 0.79 and K2 = 0.43, respectively.

3 Results and discussion

In this section we present the results of our numerical
investigation. We first address a twist transition in the
dipole configuration. Then we discuss a transition from
the dipole to the Saturn ring which is induced either by
decreasing the particle size or by applying a magnetic field.
Finally, we illustrate that the surface-ring configuration
appears when the surface-anchoring strength is lowered.

3.1 Twist transition of the dipole configuration

In Figure 4 we plot the director field of the dipole config-
uration for the one-constant approximation. A magnetic
field is not applied and the directors are rigidly anchored
at the surface. The dot indicates the location of the hy-
perbolic hedgehog. For its distance rd from the center of
the sphere, we find rd = 1.26± 0.02, where the mesh size
of the grid determines the uncertainty in rd. Our result is
in excellent agreement with reference [11]. In this article
the dipole was described via an ansatz function. However,
Ruhwandl and Terentjev using a Monte-Carlo minimiza-
tion report a somewhat smaller value for rd [9].

Figure 5 presents the distance rd as a function of the
reduced splay (K1) and twist (K2) constants. In front of
the thick line rd is basically constant. Beyond the line rd
starts to grow which indicates a structural change in the
director field illustrated in the nail picture of Figure 6.
Around the hyperbolic hedgehog the directors develop a
non-zero azimuthal component nφ introducing a twist into
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Fig. 4. The numerically determined director field of the dipole
configuration for the one-constant approximation, zero mag-
netic field, and rigid surface anchoring. The location of the
hyperbolic hedgehog is indicated by a dot. The directors lie in
the drawing plane.
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Fig. 5. The distance rd of the hyperbolic hedgehog from the
center of the sphere as a function of the reduced splay (K1)
and twist (K2) constants.

the dipole. It should be visible under a polarizing micro-
scope when the dipole is viewed along its symmetry axis.

In Figure 7 we draw a phase diagram for the twist
transition. As expected, it occurs when K1 increases or
when K2 decreases, i.e., when a twist deformation costs
less energy than a splay distortion. The open circles are
numerical results for the transition line which can be well
fitted by the straight line K2 ≈ K1 − 0.04. Interestingly,
the small offset 0.04 means that K3 does not play an im-
portant role. Typical calamatic liquid crystals like MBBA,

Fig. 6. Nail picture of a close-up of the twisted dipole con-
figuration. Around the hyperbolic hedgehog the directors are
tilted out of the drawing plane. The length of the nail is propor-
tional to the projection of the director on the drawing plane.
The head of the nail is below the plane.
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Fig. 7. Phase diagram of the twist transition as a function
of the reduced splay (K1) and twist (K2) constants. A full
explanation is given in the text.

5CB, and PAA should show the twisted dipole configura-
tion.

Since the twist transition breaks the mirror symme-
try of the dipole, which then becomes a chiral object, we
describe it by a Landau expansion of the free energy:

F = F0 + a(K1,K2)[nmax
φ ]2 + c[nmax

φ ]4. (23)

With the maximum azimuthal component nmax
φ we have

introduced a simple order parameter. For symmetry rea-
sons only even powers of nmax

φ are allowed. The phase

transition line is determined by a(K1,K2) = 0. Accord-
ing to equation (23) we expect a power-law dependence of
the order parameter with the exponent 1/2 in the twist
region close to the phase transition. To test this idea,
we choose a constant K2 and determine nmax

φ for varying

K1. As the log-log plot in Figure 8 illustrates, when ap-
proaching the phase transition, the order parameter obeys
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the expected power law:

nmax
φ ∼ (K1 − 0.4372)1/2, K2 = 0.4. (24)

3.2 Dipole versus Saturn ring

There are two possibilities to induce a transition from the
dipole to the Saturn-ring configuration; either by reducing
the particle size or by applying, e.g., a magnetic field.
We always assume rigid anchoring in this subsection, set
K24 = 0, and start with the first point.

3.2.1 Effect of particle size

In Figure 9 we plot the reduced free energy F as a function
of the angular coordinate θd of the disclination ring. For
constant θd, the free energy F was chosen as the minimum
over the radial coordinate rd. The particle radius a is the
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Saturn ring

Hξ =01/

rd

θd

a

dipole

Fig. 10. The preferred radial coordinate rd of the disclination
ring in units of a as a function of θd for two particle sizes.
Further parameters are indicated in the inset.

parameter of the curves, and the one-constant approxima-
tion is employed. Recall that θd = π/2 and θd = π corre-
spond, respectively, to the Saturn-ring or the dipole con-
figuration. Clearly, for small particle sizes (a = 180 nm)
the Saturn ring is the absolutely stable configuration, and
the dipole enjoys some metastability. However, thermal
fluctuations cannot induce a transition to the dipole since
the potential barriers are much higher than the thermal
energy kBT . E.g., a barrier of 0.1πK3a corresponds to
1000 kBT (T = 300 K, a = 1µm). At a ≈ 270 nm, the
dipole assumes the global minimum of the free energy,
and finally the Saturn ring becomes absolutely unstable
at a ≈ 720 nm. The scenario agrees with the findings of
reference [11]. Furthermore, we stress that the particle
sizes were calculated from equation (15) with the choice
of 10 nm as the real core size, and that our results depend
on the line energy (13) of the disclination.

The preferred radial coordinate rd of the disclination
ring as a function of θd is presented in Figure 10. As long
as the ring is open, rd does not depend on θd within an
error of ±0.01. Only in the region where it closes down
to the hyperbolic hedgehog does rd increase sharply. The
figure also illustrates that the ring sits closer to larger
particles. The radial position of rd = 1.10 for 720 nm
particles agrees very well with references [9,11].

3.2.2 Effect of a magnetic field

A magnetic field applied along the symmetry axis of the
dipole can induce a transition to the Saturn-ring configu-
ration. This can be understood from a simple back-of-the-
envelope calculation. Let us consider high magnetic fields,
i.e., magnetic coherence lengths much smaller than the
particle size a, which in our reduced units means: ξH � 1.
The directors are basically aligned along the magnetic
field. In the dipole configuration the director field close
to the hyperbolic hedgehog cannot change its topology.
The field lines are “compressed” along the z direction,
and high densities of the elastic and magnetic free ener-
gies occur in a region of thickness ξH . Since the field lines
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Fig. 12. (a) The Saturn ring is metastable at H = 0. The
dipole can be transformed into the Saturn ring by increas-
ing the magnetic field H beyond Ht2 where the dipole loses
its metastability. Turning off the field the Saturn ring stays.
(b) The Saturn ring is unstable at H = 0. When the mag-
netic field is decreased from values above Ht2, the Saturn ring
shrinks back to the dipole at Ht1 where the Saturn ring loses
its metastability. A hysteresis occurs.

have to bend around the sphere the cross section of the
region, in units of a2, is of the order of 1, and its volume
is proportional to ξH . The Frank free energy density is of
the order of 1/ξ2

H , and therefore the elastic free energy, in
reduced units, scales with 1/ξH . The same holds for the
magnetic free energy. In the case of the Saturn-ring con-
figuration high free energy densities occur in a toroidal
region of cross section ∝ ξ2

H around the disclination ring.
Hence, the volume scales with ξ2

H and the total free energy
is of the order of 1, i.e., a factor 1/ξH smaller than for the
dipole. Figure 11 presents a calculation for a particle size
of a = 0.5µm and the liquid crystal 5CB. We plot the re-
duced free energy as a function of θd for different magnetic
field strengths given in units of the inverse reduced coher-

ence length ξ−1
H . Without a field (ξ−1

H = 0) the dipole is
the energetically preferred configuration. The Saturn ring
shows metastability. A thermally induced transition be-
tween both states cannot happen because of the high po-
tential barrier. At a field strength ξ−1

H = 0.33 the Saturn
ring becomes the stable configuration. However, there will
be no transition until the dipole loses its metastability at
a field strength ξ−1

H = 3.3, which is only indicated by an
arrow in Figure 11. Once the system has changed to the
Saturn ring it will stay there even for zero magnetic field.
Figure 12a schematically illustrates how a dipole can be
transformed into a Saturn ring with the help of a mag-
netic field. If the Saturn ring is unstable at zero field, a
hysteresis occurs (see Fig. 12b). Coming from high mag-
netic fields the Saturn ring loses its metastability at Ht1

and a transition back to the dipole takes place. In Figure 9
we showed that the second situation is realized for parti-
cles larger than 720 nm. We also performed calculations
for a particle size of 1 µm and the liquid crystal 5CB and
still find the Saturn ring to be metastable at zero field in
contrast to the result of the one-constant approximation.

To be more concrete, according to equation (9) ξ−1
H = 1

corresponds to a field strength of 4.6 T when 0.5µm par-
ticles and the material parameters of 5CB (K3 = 0.53×
10−6 dyn, ∆χ = 10−7) are used. The transition to the
Saturn ring in Figure 11 then occurs at a rather high field
of 15 T. We expect this field to be smaller for larger par-
ticles. Alternatively, the transition to the Saturn ring is
also induced by an electric field with the advantage that
strong fields are much easier to apply. However, the large
dielectric anisotropy ∆ε = ε‖ − ε⊥ complicates a detailed
analysis because of the difference between applied and lo-
cal electric fields. Therefore, the electric coherence length
ξE = [4πK3/(∆εE

2)]1/2/a, which replaces ξH , only gives
a rough estimate for the applied field E necessary to in-
duce a transition to the Saturn ring.

Finally, in Figure 13 we plot the reduced free en-
ergy versus the applied magnetic field for different par-
ticle sizes. The energy of the dipole (dashed line) does
not depend on a. However, the field strength where the
dipole becomes unstable should depend on the particle
size. The dot indicates this strength for a = 0.5µm. The
energy curves of the Saturn ring are merely shifted by a
constant amount when the particle size a is changed. For
a = 0.25µm the Saturn ring is the stable configuration.
At the intersection points of full and dashed curves the
absolute stability changes from the dipole to the Saturn
ring. These points seem to occur at higher fields when the
particle size is increased. However, if we take into account
that ξ−1

H ∝ H is given relative to a−1 there is not much
variation in the absolute field strength H between the two
particle sizes of 0.5 and 1µm. Larger particles could not
be investigated because they would have required smaller
mesh sizes of the grid.

3.3 Influence of finite surface anchoring

In the last section we investigate the effect of finite an-
choring of the director field around the spherical particle.
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The saddle-splay term with its reduced constant K24 is
important now. We always choose a zero magnetic field. In
Figure 14 we employ the one-constant approximation and
plot the free energy versus the surface extrapolation length
ξS for different saddle-splay constants K24. Recall that ξS
is inversely proportional to the surface constant W (see
Eq. (10)). The straight lines belong to the dipole. Then,
for decreasing surface anchoring, there is a first-order tran-
sition to the surface-ring structure. We never find the
Saturn-ring to be the stable configuration although it en-
joys some metastability. For K24 = 0, the transition takes
place at ξS ≈ 0.085. This value is somewhat smaller than
the result obtained by Ruhwandl and Terentjev [9]. One
could wonder that the surface ring already occurs at such a
strong anchoring like ξS ≈ 0.085 where any deviation from
the homeotropic anchoring costs a lot of energy. However,
if ∆θ is the angular width of the surface ring where the di-
rector deviates from the homeotropic alignment (see inset
of Fig. 15), then a simple energetical estimate allows ∆θ
to be of the order of ξS. It is interesting that the transition
point shifts to higher anchoring strengths, i.e, decreasing
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Fig. 15. The saddle-splay free energy F 24 as a function of
ξS for the same curves as in Figure 14. Inset: F 24 versus the
angular width of the surface ring calculated from the ansatz
functions in equations (25) for K24 = 1.

ξS when K24 is increased. Obviously the saddle-splay term
favors the surface-ring configuration. To check this conclu-
sion, we plot in Figure 15 the saddle-splay free energy F 24

versus ξS. The horizontal lines belong to the dipole. They
correspond to the energy which one expects for a rigid
homeotropic anchoring at the surface of the sphere (see
Eq. (12)). In contrast, for the surface-ring configuration
the saddle-splay energy drops sharply. The surface ring
around the equator of the sphere introduces a “saddle” in
the director field as illustrated in the inset of Figure 15.
Such structures are known to be favored by the saddle-
splay term. We modeled the surface ring with an angular
width ∆θ by the following director components:

nr = − tanh

(
θ − π/2

∆θ

)
(25a)

nθ = −

[
cosh

(
θ − π/2

∆θ

)]−1

, (25b)

where ∆θ � π/2 to ensure that nr = 1 at θ = 0, π, and
calculated the saddle-splay energy versus ∆θ by numer-
ical integration. The result for K24 = 1 is shown in the
inset of Figure 15. It fits very well to the full numerical
calculations and confirms again that a narrow “saddle”
around the equator can considerably reduce the saddle-
splay energy.

For the liquid crystal 5CB, we determined the stable
configuration as a function of K24 and ξS. The phase dia-
gram is presented in Figure 16. With its help we can derive
a lower bound for the surface constant W at the interface
of water and 5CB when the surfactant sodium dodecyl sul-
fate is involved. As the experiments by Poulin et al. clearly
demonstrate, water droplets dispersed in 5CB do assume
the dipole configuration. From the phase diagram we con-
clude ξS < 0.09 as a necessary condition for the existence
of the dipole. With a ≈ 1µm, K3 = 0.53× 10−6 dyn, and
the definition (10) for ξS we arrive at

W > 0.06 erg/cm2. (26)
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If we assume the validity of the Cauchy-Relation (6),
which for 5CB gives K24 = 0.61, we conclude that W >
0.15 erg/cm2.

4 Conclusions

The purpose of the article was to give a detailed study of
the director field around a spherical particle and to illus-
trate how it can be manipulated by an external field. We
clearly find that for large particles and sufficiently strong
surface anchoring the dipole is the preferred configuration.
For conventional calamitic liquid crystals where K2 < K1,
the dipole should always exhibit a twist around the hyper-
bolic hedgehog. It should not occur in discotic liquid crys-
tals where K2 > K1. According to our calculations, the
bend constant K3 only plays a minor role for the twist
transition. The Saturn ring appears for sufficiently small
particles. However, the dipole can be transformed into the
Saturn ring by means of a magnetic field if the Saturn ring
is metastable at H = 0. Otherwise a hysteresis is visible.
For the liquid-crystal 5CB we find the Saturn ring to be
metastable for a particle size a = 1µm. Increasing the ra-
dius a, this metastability will vanish in analogy with our
calculations within the one-constant approximation (see
Fig. 9). Decreasing the surface-anchoring strength W , the
surface ring configuration with a quadrupolar symmetry
becomes absolutely stable. We never find a stable struc-
ture with dipolar symmetry where the surface ring has a
general angular position θd or is even shrunk to a point
at θd = 0, π. The surface ring is clearly favored by a large
saddle-splay constant K24.

So far convincing experiments on dispersions of spher-
ical particles in a nematic liquid crystal only exist in the
case of inverted nematic emulsions [10,12,13]. We hope
that the summary of our results stimulates further exper-
iments which try different liquid crystals as a host fluid,
manipulate the anchoring strength, investigate the effect
of external fields, and attempt to disperse silica or latex
spheres [39–43].

The author thanks T.C. Lubensky, P. Poulin, A. Rüdinger,
Th. Seitz, J. Stelzer, E.M. Terentjev, H.-R. Trebin, and
S. Žumer for helpful discussions. The work was supported
by the Deutsche Forschungsgemeinschaft under Grant No.
Tr 154/17-1/2.

Note added in proof

An equatorial ring structure was observed in [42]. Accord-
ing to our numerical investigation, it is the surface-ring
configuration.

Appendix A

For completeness we give the explicit formulas of∇ ·n, n ·
∇×n, and n×(∇×n) for the director field in equation (1)
and the modified spherical coordinates (ρ, θ):

∇ · n =
√
ρ(2nr − 2ρnr,ρ + cot θnθ + nθ,θ)

(A.1a)

n ·∇× n =
√
ρ(2ρnθnφ,ρ − 2ρnφnθ,ρ − nφnr,θ

+ cot θnrnφ + nrnφ,θ) (A.1b)

n× (∇× n) =
√
ρ[nθ(nθ − 2ρnθ,ρ − nr,θ)

+ nφ(nφ − 2ρnφ,ρ)]er

+
√
ρ[nφ(cot θnφ + nφ,θ)

− nr(nθ − 2ρnθ,ρ − nr,θ)]eθ
−
√
ρ[nr(nφ − 2ρnφ,ρ)

+ nθ(cot θnφ + nφ,θ)]eφ. (A.1c)

Partial derivatives are indicated by i (i = ρ, θ) and

∂

∂r
= −2ρ3/2 ∂

∂ρ
(A.2)

was used.

Appendix B: Chain rule for functional
derivatives

Suppose F [Φi] is a functional depending on the fields Φi(x)
in real space. The functional derivative δF/δΦi(x) is in-
troduced via the Taylor expansion

δF = F [Φi + δΦi]− F [Φi]

≈
∑
i

∫
δF

δΦi(x)
δΦi(x) d3x. (B.1)

δF indicates the change of the functional if at every space
point the field Φi(x) is changed by the small amount
δΦi(x). The special choice δΦi = δijεδ(x − x0) leads di-
rectly to the definition

δF

δΦj(x)

∣∣∣∣
x=x0

:= lim
ε→0

F [Φi + δijεδ(x− x0)]− F [Φi]

ε
·

(B.2)
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If the field Φi depends on other fields φk, i.e., Φi = Φi(φk),
then with

F [Φi(φk + δjkεδ(x− x0))] ≈ F [Φi(φk)

+ δjkεδ(x− x0)
∂Φi

∂φj
] (B.3)

one obtains immediately the chain rule

δF

δφj
=
∑
i

δF

δΦi

∂Φi

∂φj
(B.4)

from equation (B.2).
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18. A. Borštnik, H. Stark, S. Žumer, Phys. Rev. E

(to be published).
19. P. Galatola, J.B. Fournier, in Abstract Book, 17th In-

ternational Liquid Crystal Conference, Strasbourg, France
(1998), p. O-19.

20. A. Ajdari, L. Peliti, J. Prost, Phys. Rev. Lett. 66, 1481
(1991).

21. B.D. Swanson, L.B. Sorenson, Phys. Rev. Lett. 75, 3293
(1995).

22. P. Ziherl, R. Podgornik, S. Žumer, Chem. Phys. Lett. 295,
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